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Part 1: Matrices and linear algebra
basics

Intuition and basic tools relevant for quantitative methods in population health sciences
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Scalars, vectors, matrices

a = a , a scalar

y =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

y1

y2

⋮

yn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

,  a vector of length n

X =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

x11 x12 ⋯ x1p

x21 x22 ⋯ x2p

⋮ ⋮ ⋱ ⋮

xn1 xn2 ⋯ xnp

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

,  an n × p matrix
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Imagine this very happy Ron
Swanson Rowing a Canoe and
remember that Rows come before
Columns when indexing elements
of a matrix

Note on dimensions

We read dimensions like  as rows by columns.  is a 3x4 matrix:

Individual elements are indexed in the same row-column order:  is the
element in the second row and third column.

n × p X

X3×4 =

⎡
⎢
⎣

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

⎤
⎥
⎦

3×4

x23
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Data example

Let's look at a simple example - data stored in a matrix  with 10 individuals
and 4 variables:

age in years
height in inches
a dichotomous indicator of whether the individual likes dogs
year of birth

X

X =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

25 67 ⋯ 1995

38 63 ⋯ 1982

⋮ ⋮ ⋱ ⋮

41 59 ⋯ 1979

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

age =

⎡
⎢ ⎢ ⎢ ⎢
⎣

25

38

⋮

41

⎤
⎥ ⎥ ⎥ ⎥
⎦

age1 = 25
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Data example: in R

Build the data set

set.seed(6789)
n <- 10
dat <- data.frame(
  age = round(runif(n, 22, 45)), height = round(rnorm(n, 66, 4)), likes_dogs = rbinom(n, 1, .53)
)
dat$yob <- 2020 - dat$age
dat <- as.matrix(dat)

dat

##       age height likes_dogs  yob
##  [1,]  25     67          0 1995
##  [2,]  38     63          1 1982
##  [3,]  35     66          1 1985
##  [4,]  36     70          1 1984
##  [5,]  23     62          1 1997
##  [6,]  26     73          1 1994
##  [7,]  44     68          0 1976
##  [8,]  23     70          1 1997
##  [9,]  25     70          1 1995
## [10,]  41     59          0 1979
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Data example: in R

What are the dimensions of this matrix?

# both dimensions
dim(dat)

## [1] 10  4

# number of rows
nrow(dat)

## [1] 10

# number of columns
ncol(dat)

## [1] 4

7 / 47



Data example: in R

Let's inspect parts of this matrix (vectors and scalars)

# Extract everyone's age (column vector)
dat[,1]

##  [1] 25 38 35 36 23 26 44 23 25 41

# Find out if participant 2 likes dogs (scalar)
dat[2,3]

## likes_dogs 
##          1

Q: How do we get all the data for participant 7?
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The geometry of vectors

Let's look at the age, height and shoe size of
participants 1 and 2:

The more attributes we measure about people, the
higher-dimensional the space -- and the more precisely
we can describe each person (they're not near anyone
else in space).

x1 =

⎡
⎢
⎣

25

67

10.5

⎤
⎥
⎦

x2 =

⎡
⎢
⎣

38

66.5

7

⎤
⎥
⎦
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Transposing vectors and matrices

We can flip a vector on its side by transposing it.

Note: We may also refer to transposed vectors (and matrices) with "prime" notation:  (Not to be confused
with a derivative!)

Stack these row vectors and you have a matrix!

Q: What are the dimentions of ?

x1 =
⎡
⎢
⎣

25

67

10.5

⎤
⎥
⎦

x2 =
⎡
⎢
⎣

38

66.5

7

⎤
⎥
⎦

x
T

1 = [ 25 67 10.5 ] x
T

2 = [ 38 66.5 7 ]

x
T

1 = x
′
1

X = [
x

T

1

x
T

2

] = [ 25 67 10.5

38 66.5 7
]
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Transposing vectors and matrices

We can also think of vectors as single-columned matrices:

A column vector  of length  has dimensions .

A row vector  of length  has dimensions .

Thinking about vectors this way will be really handy when we multiply vectors and matrices!

y n n × 1

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

y1

y2

⋮

yn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

n×1

y
′

n 1 × n

[ y1 y2 ⋯ yn ]1×n
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Transposing vectors and matrices

We can also transpose matrices

The former columns (variables) are now rows. The former rows (participants) are now columns.

X =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

25 67 ⋯ 1995

38 63 ⋯ 1982

⋮ ⋮ ⋱ ⋮

41 59 ⋯ 1979

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

X
T = X

′ =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

25 38 ⋯ 41

67 63 ⋯ 59

⋮ ⋮ ⋱ ⋮

1995 1982 ⋯ 1979

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦
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Transposing vectors and matrices

We can transpose a matrix using the t() function:

t(dat)

##            [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## age          25   38   35   36   23   26   44   23   25    41
## height       67   63   66   70   62   73   68   70   70    59
## likes_dogs    0    1    1    1    1    1    0    1    1     0
## yob        1995 1982 1985 1984 1997 1994 1976 1997 1995  1979

If we save this as another object, we can extract elements using the opposite indices as before:

dat_t <- t(dat)
dat[3, 4] # participant 3's year of birth

##  yob 
## 1985

dat_t[4, 3]

##  yob 
## 1985
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Vector & matrix multiplication

When we multiply a scalar by a vector or a matrix, we can just do so element by element:

But multiplying vectors and matrices requires special rules

ay =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

ay1

ay2

⋮

ayn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

aX =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

ax11 ax12 ⋯ ax1p

ax21 ax22 ⋯ ax2p

⋮ ⋮ ⋱ ⋮

axn1 axn2 ⋯ axnp

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦
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Vector & matrix multiplication

We can only multiply vectors of the same length, and we have to transpose
one before we can do so.

Consider two vectors of length ,  and :
Think of them as matrices, each with 1 column
To multiply them, their inner dimensions must match => must transpose
one of them:

  

 

p b c

b
T

c =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

b1

b2

⋮

bp

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

T

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

c1

c2

⋮

cp

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

= [ b1 b2 ⋯ bp ]

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

c1

c2

⋮

cp

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

= b1c1 + b2c2 + ⋯ + bpcp = ∑p

i=1 bici
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Matrix  matrix multiplication

Let's multiply a  matrix  by the  matrix :

 

where  is the product of the first row of  and the first column of 

×

m × n Y n × p X

Ym×nXn×p =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

y11 y12 ⋯ y1n

y21 y22 ⋯ y2n

⋮ ⋮ ⋱ ⋮

ym1 ym2 ⋯ ymn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

x11 x12 ⋯ x1p

x21 x22 ⋯ x2p

⋮ ⋮ ⋱ ⋮

xn1 xn2 ⋯ xnp

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

z11 ⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

z11 Y X

z11 = ∑n

i=1
y1ixi1
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Matrix  matrix multiplication

Now we do the same vector-vector multiplication with every pair of a row from  and a column from 

 

(You don't have to do it in any particular order, just keep multiplying until all row-column pairs have been
multiplied.)

Q: What's the expression for ?

×

Y X

Ym×nXn×p =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

y11 y12 ⋯ y1n

y21 y22 ⋯ y2n

⋮ ⋮ ⋱ ⋮

ym1 ym2 ⋯ ymn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

x11 x12 ⋯ x1p

x21 x22 ⋯ x2p

⋮ ⋮ ⋱ ⋮

xn1 xn2 ⋯ xnp

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

z11 z12 ⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

z23

z23 = ∑
n

i=1 y2ixi3
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Matrix  matrix multiplication: in R

X <- matrix(c(6, 3, 1, 6, 2, 3), ncol = 3)
X

##      [,1] [,2] [,3]
## [1,]    6    1    2
## [2,]    3    6    3

tX = t(X)
tX

##      [,1] [,2]
## [1,]    6    3
## [2,]    1    6
## [3,]    2    3

Z = tX%*%X
Z

##      [,1] [,2] [,3]
## [1,]   45   24   21
## [2,]   24   37   20
## [3,]   21   20   13

×
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Matrix  matrix multiplication: in R

Z = tX%*%X
Z

##      [,1] [,2] [,3]
## [1,]   45   24   21
## [2,]   24   37   20
## [3,]   21   20   13

tX[1,]%*%X[,1]

##      [,1]
## [1,]   45

NOTE!!! Order of matrices in the multiplication matters!

W = X%*%tX
W

##      [,1] [,2]
## [1,]   41   30
## [2,]   30   54

×
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(Note on dimensions)

Notice that I explicitly wrote out the dimensions when multiplying 

Just like we can only multiply vectors of the same length, dimensions of matrices must be compatible in order to be
multiplied.

The inner dimensions must match, then the resulting product is a matrix with the outer dimensions.

I think of this as the inner dimensions "collapsing"

Ym×nXn×p
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Identity matrix

We all know 1 is special. When you multiply a number by 1, you get the same number.

Matrices have their own special matrix, the identity matrix: .

For example:

I

XI = X for any matrix X

QI = [ r s t

u v w
]

2×3

⎡
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤
⎥
⎦

3×3

= [ r s t

u v w
]

2×3
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Symmetrical matrixes

The identity matrix  is an example of a symmetric matrix:  =  for any ,  where 

If you multiply a matrix by itself, the result is also a symmetric matrix:

I Ii,j Ij,i i j i ≠ j

QT Q =
⎡
⎢
⎣

r2 + u2 rs + uv rt + uw

rs + uv s2 + v2 st + vw

rt + uw st + vw t2 + w2

⎤
⎥
⎦
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Inverse of a matrix and linear independence

The inverse of a matrix  is the matrix  such that

For a scalar ,  is the multiplicative inverse of : when we multiply the two together, we get 1
For a matrix, the inverse is much more difficult to find, and does not exist if the columns are linearly
dependent

Q Q−1

QQ−1
= I

a a
−1 =

1

a
a
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We can attempt to invert a matrix using the solve()
function:

mat_a

##      [,1] [,2]
## [1,]    2    1
## [2,]    6    8

solve(mat_a)

##      [,1] [,2]
## [1,]  0.8 -0.1
## [2,] -0.6  0.2

We can check to make sure this is the inverse:

mat_a_inv <- solve(mat_a)
mat_a_inv %*% mat_a

##      [,1] [,2]
## [1,]    1    0
## [2,]    0    1

We get the identity matrix !

Inverse of a matrix and linear independence: in R

I
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Inverse of a matrix and linear independence: in R

What if we have a matrix whose columns are not linearly independent?

mat_b

##      [,1] [,2]
## [1,]    2    1
## [2,]    6    3

solve(mat_b)

## Error in solve.default(mat_b): Lapack routine dgesv: system is exactly singular: U[2,2] = 0

Whenever you get an error message about something being "singular", that's code for a matrix not being
invertible -- check for linear dependence!

Q: How could you tell the matrix above is not invertible?
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We can plot predicted height as a function of age in
years alone. This is a line.

Inverse of a matrix and linear independence

Consider a situation in which we're predicting height as a linear function of several variables we have in our
dataset: age in years, shoe size, and age in months.

height =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

51

61

52

65

60

48

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

other variables =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

30 7 360

31 10 372

25 9 300

35 10 420

42 6 504

27 7 324

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

25 30 35 40

55

60

65

age in years

pr
ed

ic
te

d 
he

ig
ht
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If we plot predicted height as a function of age in
years and shoe size, we get a plane.

That is, we get more information about height from
knowing someone's shoe size. If two people are the
same age, but have different shoe sizes, we'll predict
different heights for them.

Linear independence, cont.
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But if we plot predicted height as a function of age in
years and age in months, we get a line again, instead
of a plane.

That's because age in years and age in months are
linearly dependent: we can write one as a linear
combination of the others; that is, age in months = 12 

 age in years.

We don't get any extra information from knowing age
in months that we didn't already have from age in
years.

Linear dependence

×
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In "real life"

Linear dependence will come into play when we cover regression. In the meantime, we can practice some
regression matrix notation! You may be used to seeing a linear regression equation written out like this:

Well, that's the same thing as:

where  and  where  for all i

Try multiplying it out by hand, first making sure the dimensions are compatible (notice the necessity to
transpose )!

Stay tuned for more on this when we cover regression analysis 😁

yi = β0 + β1xi1 + β2xi2 + ϵi

yi = βT
xi + ϵi

β =

⎡
⎢
⎣

β0

β1

β2

⎤
⎥
⎦

3×1

xi =

⎡
⎢
⎣

xi0

xi1

xi2

⎤
⎥
⎦

3×1

xi0 = 1

β
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This whole section has a lot of great information and
practice with matrices.

For a more advanced introduction, work through the
sections on vectors, linear combinations, and linear
dependence here.

You can also pick and choose from the videos here,
particularly those on functions and linear
transformations.

More resources
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https://www.khanacademy.org/math/precalculus/precalc-matrices
https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces
https://www.khanacademy.org/math/linear-algebra/matrix-transformations


Part 2: Functions, data transformations
and a sprinkle of calculus

Now that we've explored how data is stored, let's look at how data can be transformed
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Logarithms

If you see  in this class, or basically anywhere in
probability and statistics, it will refer to the natural
logarithm, or .

What do you notice about the function ?

You can only "log" a positive number. Something like 
 is undefined. We can see that 

. Importantly, , so 
 for any  between 0 and 1 will give you a

negative number.

log(x)

ln(x)

log(x)

log(−1)
limx→0 log(x) = −∞ log(1) = 0
log(x) x
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Exponentiation

The inverse of the natural log is the natural expontial
function , which we also write as :

so if one side of an equation is exponentiated, we can
always "get out of it" by applying a logarithm to both
sides, and vice versa.

 and 

But we can't do that if x is negative! Recall that we
can't take a log of a negative number, and
exponentiating a number is never going to give
us anything negative.

e
x exp(x)

exp(x) = y ⟺ x = log(y)

log(exp(x)) = x exp(log(x)) = x
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Rules to live by

When we have a sum inside an exponent, we can decompose this into the product of two exponents:

Similarly, a product inside a logarithm can be written as a sum of logs:

Of course, the same is true of the inverses of addition and multiplication, subtraction and division:

You will need to know these rules to understand various regression models in this class, I promise!

exp(a + b) = exp(a) exp(b)

log(ab) = log(a) + log(b)

exp(a − b) =
exp(a)

exp(b)

log( ) = log(a) − log(b)
a

b
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Why do we care?

The log function takes a number  constrained to be , and transforms it onto an unbounded number space

Probability: ranges from 0 to 1 (strictly constrained)
Say we know  is a function of age and height: how do we take 2 numbers, both outside the
range of 0 to 1, and get a probability that is strictly between 0 and 1?

The logit function is here to help!

x > 0

Pr[likesdogs = 1]
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Let's break it down. Think about flipping a coin lots of
times: heads you win, tails you lose.

A probability describes the number of successes
out of the total number of trials (a proportion)
An odds describes the number of successes
compared the the number of failures (a ratio)

Let's say you get 4 heads out of 10 flips:

probability = 
odds = 

These are really different numbers!

Odds and probabilities

4

10
4

6

odds =
prob

1−prob

prob =
odds

1+odds
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Logits and expits

The logit of , aka the log-odds of , can take a number
between 0 and 1 (like a probability!) and transform it to
a number between  and .

We can invert it to get the expit function, which can
take any number on the real line and transform it to a
value between 0 and 1:

p p

−∞ ∞

logit(p) = log( )p

1−p

expit(x) =
exp(x)

1+exp(x)
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Back to the data example:

##    age height likesdogs  yob
## 1   25     67         0 1995
## 2   38     63         1 1982
## 3   35     66         1 1985
## 4   36     70         1 1984
## 5   23     62         1 1997
## 6   26     73         1 1994
## 7   44     68         0 1976
## 8   23     70         1 1997
## 9   25     70         1 1995
## 10  41     59         0 1979
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Q: What's the probability of
liking dogs of a person who's
20 years old and 67 inches tall?

Back to the data example:

Consider the following logistic regression model for the predicted probability that someone likes dogs (  ) given
their age in years (  ):

What's the probability that person 4 likes dogs?

pi

xi

ˆ
log( ) = 0.4 + 0.07 ∗ agei − 0.005 ∗ heighti

pi

1−pi

Log-odds: 

Odds: 

Probability: 

log( ) = 0.4 + 0.07 ∗ 36 − 0.005 ∗ 70 = 2.57
p4

1−p4

= exp(2.57) = 13.066
p4

1−p4

p4 = = = 0.92913.066
1+13.066

exp(0.4+0.07∗36−0.005∗70)

1+exp(0.4+0.07∗36−0.005∗70)
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A quick dip into calculus
More intuition - less mechanics
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Where is  greatest?

Derivatives

The basic idea of a derivative is that it describes the
rate of change of a function. If the function we're
looking at is , then there are a couple of ways we
usually notate the first derivative of , which we'll
use interchangeably:

Both equivalently tell us that we are looking at the
function  and taking the first derivative with
respect to the variable . That means that as 
changes, we want to know how much  changes.
This is just the slope of  at a given value of .

g(x)
g(x)

g′(x) = g(x)
d

dx

g(x)
x x

g(x)
g(x) x

g′(x)
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Where does ?

When the first derivative is 0, the function may have
reached its maximum or minimum.

So if you want to maximize a function, one way to do so
is to differentiate it and then set it equal to 0.

More derivatives

Where is  greatest?g
′(x) g

′(x) = 0
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In the graph of  below, the area in
blue is represented by the integral

Integrals

We might want to describe a function by the area
under its curve

An integral tells us how much cumulative space a
function is covering (in terms of distance from the -
axis) as  gets larger.

x
x

f(x) = 2x3 + 3x2 + 4

∫
2

−2

2x3 + 3x2 + 4 dx
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The integral of a non-negative function increases with :

and so on. On the graph, the area under the curve can
only accumulate area, so the integral evaluated at
greater and greater upper limits can only increase.

Integrals

The values at the top and bottom of the integral sign
are those between which we're computing the
integral. We could integrate over the whole function,
from  to , or choose other limits of integration:

What limits of integration are displayed here?

∫
2

−2

2x
3

+ 3x
2

+ 4 dx

−∞ ∞

x

∫
−1

−2

2x
3

+ 3x
2

+ 4 dx

≤ ∫
0

−2

2x
3

+ 3x
2

+ 4 dx

≤ ∫
1

−2

2x
3

+ 3x
2

+ 4 dx

≤ ∫
2

−2

2x
3

+ 3x
2

+ 4 dx
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Data example

Let's pretend we grabbed a larger sample from the population where we are examining age, height, affinity for
dogs and year of birth:

set.seed(6789)
n <- 1000
dat <- data.frame(
  age = round(runif(n, 22, 45)), height = round(rnorm(n, 66, 4)), likes_dogs = rbinom(n, 1, .53)
)
dat$yob <- 2020 - dat$age

summary(dat)

##       age            height        likes_dogs         yob      
##  Min.   :22.00   Min.   :55.00   Min.   :0.000   Min.   :1975  
##  1st Qu.:28.00   1st Qu.:63.00   1st Qu.:0.000   1st Qu.:1981  
##  Median :33.00   Median :66.00   Median :1.000   Median :1987  
##  Mean   :33.12   Mean   :66.13   Mean   :0.524   Mean   :1987  
##  3rd Qu.:39.00   3rd Qu.:69.00   3rd Qu.:1.000   3rd Qu.:1992  
##  Max.   :45.00   Max.   :80.00   Max.   :1.000   Max.   :1998
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Data example

The distribution of height in inches:

Q: Roughly what proportion of the sample is <70 inches tall? What's an expression for this quantity in
terms of the integral of the PDF of height?
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Here is a lot of information about derivatives. You
don't need more than the first few videos.

Same with this intro to integrals.

Watch the video on antiderivatives and indefinite
integrals from this page and some of those on this
page to understand the link between derivatives and
integrals.

More resources
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https://www.khanacademy.org/math/calculus-home/taking-derivatives-calc
https://www.khanacademy.org/math/calculus-home/integral-calculus/definite-integrals-intro-ic
https://www.khanacademy.org/math/calculus-home/integral-calculus/indefinite-integrals
https://www.khanacademy.org/math/calculus-home/integral-calculus/fundamental-theorem-of-calculus-ic

