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Things to keep in mind:

▪ You don’t have to remember everything we talk about number for 
number, word for word

▪ This is going to be an interactive session

▪ A lot of these concepts serve as the foundation for what we’ll be 
covering later in the course, so this is a warm-up and a reference

▪ We are all here to support you however we can! 

▪ This is a challenging time, and we are learning what works and 
doesn’t work right along with you, so please don’t hesitate to give 
feedback



Our goals today:

▪ What is probability?

▪ Set notation

▪ Random variables

▪ Probability 
distributions

▪ Introduction to 
statistics

▪ Why and do we use 
statistical concepts?

▪ Putting it all in context!



What is probability?

http://www.PollEv.com/unnatimehta240

http://www.pollev.com/unnatimehta240


What is probability?

▪ It is the relative likelihood that a 
given outcome or event will occur

▪ Ranges from 0 to 1

▪ What is the probability that we 
would randomly select a blue dot?

▪ How can we use probabilities?
– Start with a population
– Understand the probability 

distribution
– Observe the parameter of choice

4/20 = 1/5 = 0.2

1 – 0.2 = 0.8



Set Notation

G
(this is our subset!)

Ω

G⊂Ωà this means that G is a 
“subset” of Ω

• In minion world, there are two 
hairstyles (long and short) and 
there are three possible colors 
(green, red, and blue)

• The sample space Ω consists of all 
possible outcomes of a particular 
trial

• We can also subset our sample 
space Ω to include only certain 
elements

(this is our sample space!)



Probability and Sets

Ω

P(             ) =

0.3 0.1 0.2

0.15 0.20 0.05

G

We define P() so that the probability 
of seeing each type of minion is 
shown in the diagram.

P(G) =

The function P(*) denotes the probability of an event * occurring, where 
event * is a subset of the sample space (Ω). The output is a real number 
between 0 and 1.

P(Ω) = 1



Probability and Sets

Operations

A ∪ B 
• The union of A and B
• A set of elements contained in 

A or B

A ∩ B
• The intersection of A and B
• A set of elements contained in 

A and B

Statements

A ⊂ B 
• A is a subset of B (in this case, 

it’s not)

A and B are mutually exclusive
• There is no overlap in 

elements between A and B



Probability and Sets
Quick tip:
∪à “or” 
∩à “and”

0.3 0.1 0.2

0.15 0.20 0.05

G

L

! ! ∩ ! =

!(!) =
!(!) =

! ! ∪ ! =

Ω



Mutual Exclusivity

▪ G and R are mutually exclusive if no element in G is 
also in R,  and no element in R is also an element of 
G, i.e.

! ! ∩ ! = 0
▪ In this case, if G ⊂Ω and R ⊂Ω, and G and R are 

mutually exclusive, then:
– P(Ω) = 1
– P(G) ≥ 0, P(R) ≥ 0
– P(G ∪ R) = P(G) + P(R) =  

0.3 0.1 0.2

0.15 0.2 0.05

G R

Ω



Conditional Probability

▪ We can also assess probability within subsets of 
the sample space.

▪ Conditional probability is defined as the 
probability that an event will occur given that 
another event has already occurred.

! ! ! = !(!∩!)
!(!) =

0.3 0.1 0.2

0.15 0.20 0.05

G

L

Ω



Decomposition 

We can use a trick to calculate the probability of 
event Z

! !

= ! ! ∩ ! + ! ! ∩ ! + ! ! ∩ !

=

0.3 0.1 0.2

0.15 0.20 0.05

Z

Ω



Decomposition 

Let Ω be the sample space. Say A1, A2…An are mutually exclusive, and A1∪
A2∪… ∪An = Ω

Then:

Now, let’s say we want to calculate !(!!|!)…

! ! = ∑!!!! !(!! ∩ !)



Bayes’ Theorem

Recall the definition of conditional probability:

We can rewrite the numerator of this equation as:

Recall the definition of decomposition:

! !! ! = !(!! ∩ !)
!(!)

! !! ∩ ! = ! ! !! !(!!)

!(!) = ∑!!!! !(!! ∩ !)à! !! ∩ ! = ! ! !! !(!)

(this goes back to rules of 
conditional probability)

So we get:

! !! ! = ! ! !! !(!!)
∑!!!! ! !|!! !(!!)



Bayes’ Theorem

! !! ! = ! ! !! !(!!)
∑!!!! ! !|!! !(!!)

Let Ω be the sample space. Say A1, A2…An are mutually exclusive; and A1∪A2∪… ∪
An = Ω; and P(B) > 0

Then:

Can anyone think of a context in which Bayes’ Theorem is commonly used/can be 
used?



Random Variables



Random Variables

0.3 0.1 0.2

0.15 0.2 0.05

G R BG

S

L• Let’s define X as color of minion:

X= !
1 !" !
2 !" !
3 !" !

• Let’s define Y as hair type of minion:

Y= !1 !" !2 !" !

• A random variable can be written as a 
function that delineates subsets of Ω on the 
real line, ℝ Ω



Random Variables

• Discrete random variables can take on separate values
• Refers to binary, categorical, or count variables
• Example àColors (X ∈ {1,2,3})
• Example à Smoking (X ∈ {0,1})

• Continuous random variables can take on any value in an interval
• Example àTest scores (X ∈ (0,100))
• Example àAnnual income (X ∈ (0, ℝ))

• Random variables help to simplify probability statements
• P(G) can be written as P(X=1)
• P(R) can be written as P(X=2)
• P(L) can be written as P(Y=1)
• P(G ∩ L) can be written as P(X=1, Y=1)



Probability Mass Function (PMF):
Discrete RVs

• We’ve defined X as color of minion:

fX(x) = P(X=x) =
0.45 → ! = 1
0.30 → ! = 2
0.25 → ! = 3
0 → !"ℎ$%&'($

• A PMF is a quantitative rule that assigns 
probability to a value of a discrete random 
variable

• Probability mass functions plot the possible 
values of a random variable against the 
probability of observing those values

This subscript reminds us that this 
function is associated with random 
variable X. It is often suppressed.



Cumulative Distribution Function (CDF)

A CDF is a quantitative rule that assigns a probability to a set of values for a 
random variable and is written as:

!! ! = !(! ≤ !)

…or the probability that X is less than or equal to some specific x.



Cumulative Distribution Function

X = color of minions, and FX(x)  is the CDF for X:

FX(x) = P(X ≤ x) =
! !" ! < 1
0.45 !" ! = 1
0.75 !" ! = 2
1.00 !" ! ≥ 3

Notice, that if we accumulate the probabilities 
observed in the PMF, we get the CDF!



Discrete Random Variables:
Expectation and Variance

The expected value and variance for random variable X are defined as:

!! = !! ! =!
!
(!!!(!))

!!! = !"#! ! =!
!
(! − !! ! )!∗ !!!



Discrete Random Variables:
Expectation and Variance

X = color of minions, and fX(x)  is the PMF for X:

fX(x) = P(X = x) =
0.45 → ! = 1
0.30 → ! = 2
0.25 → ! = 3
0 → !"ℎ$%&'($

!! ! = 0.45 ∗ 1+ 0.30 ∗ 2+ 0.25 ∗ 3 = 1.8

!"#! ! = (1− 1.8)!∗ 0.45+ 2− 1.8 ! ∗ 0.30+ 1− 1.8 ! ∗ 0.25 = 0.46



Continuous Random Variables

• Now let’s say that in minion world, 
minions could have any hair length 
or be of any color

• Our sample space Ω would then 
consist of an infinite number of 
possible minions

Ω



Continuous Random Variables

• Let’s define X as color of minion

! = !"#$%$&'(ℎ !" !"

• Let’s define Y as hair length of 
minion

! = !"#$%ℎ !"!!

Ω



Probability Density Function (PDF)

• The PDF for random variable X, !!(!), has the following properties:
• !!(!) > 0 for all values of !
• The area under the PDF over all values of random variable X equals 1
• If we integrate  the PDF, we get the CDF, as it assigns a probability to a set of values 

from a random variable

• The definition for the CDF is essentially the same for continuous and discrete random 
variables à fX(x) = P(X ≤ x)

!"# = !!(!) = !!"# = !
!!"#

!!"#
!!(!)



PDF and CDF

!! ! = ! ! ≤ !

!! 550 = ! ! ≤ 550

= !( )



Continuous Random Variables:
Expectation and Variance

The expected value and variance for random variable X are defined as:

!! = !! ! = !
!!"#

!!"#
!!! ! !"

!!! = !"#! ! = !
!!"#

!!"#
! − !! ! !!! ! !"



Joint Probability Mass Functions

• Joint probability functions can be used to 
assign probabilities to values obtained by a 
vector of discrete random variables 

• Below, we’ve defined a joint PMF for 2 
random variables, color X and hair type Y

! !,! = !(! = !,! = !)

0.3 0.1 0.2

0.15 0.20 0.05

Ω

X = color of minion
Y = hair type of minion



Joint Probability Mass Function

0.3 0.1 0.2

0.15 0.20 0.05

Ω

X = color of minion
Y = hair type of minion

• Remember:

X= !
1 !" !
2 !" !
3 !" !

• And:

Y= !1 !" !2 !" !

! !,! = ! ! = 1,! = 1 =



Independence

If X and Y are independent random variables, their joint PMF !!"(!,!) can 
be written as the product of  their marginal PMFs !!(!) , and !! ! :

!!" !,! = !! ! ∗ !! !

In other words:

! ! = !,! = ! = ! ! = ! ∗ !(! = !)



Independence

0.3 0.1 0.2

0.15 0.20 0.05

Ω

X = color of minion
Y = hair type of minion

fX(x) = P(X = x) =
0.45 → ! = 1
0.30 → ! = 2
0.25 → ! = 3
0 → !"ℎ$%&'($

fY(Y) = P(Y = y) = !
0.60 → ! = 1
0.40 → ! = 2
0 → !"ℎ$%&'($

!!" 1,1 = !! 1 ∗ !! 1 = 0.45 ∗ 0.60 = 0.27~0.30



Common Probability 
Distributions



Probability Distributions

• We make the assumption that the process by which our data 
were “generated” can be described by a particular probability 
distribution, whose parameters, θ, are ultimately unknown

Discrete

▪ Bernoulli

▪ Binomial

▪ Poisson

▪ Geometric

▪ Hypergeometric

▪ Negative Binomial

Continuous

▪ Normal (“Gaussian”)

▪ Exponential

▪ Gamma

▪ Uniform

▪ Beta



Probability Distributions

• A probability distribution is a function that gives us the probability for every possible 
value of a random variable

• When we make distributional assumptions, we often use the following notation:

!~!"#$%"&'$"()(!!,… ,!!)
e.g. X~!(!,!!)

• Specifying a distributional assumption inherently implies that we expect our data to 
have certain properties, e.g. 
• mean
• variance
• kurtosis
• etc. 



A Bernoulli Trial

We can think of observing hair length as a 
binary variable, X: 0) short, 1) long
If we were to randomly choose one 
minion, what would be your best guess? It 
may be useful to characterize our intuition 
mathematically: 

! ! = ! = !0.40 for ! = 0
0.60 for ! = 1

Ω0.3 0.1 0.2

0.15 0.20 0.05

S

L



A Bernoulli Trial

If we assume:
1. Each observation, or “Bernoulli trial,” results in one of two 

possible outcomes (minion with short hair, minion with long 
hair)

2. The probability of success remains constant across trials 
(picking X = 1 this trial does not affect what you will pick next 
trial)

3. Each trial is independent

Then, we can model the probability of possible outcomes in our 
sample with a binomial distribution 



Binomial Distribution

Random Variable àY = the number of successes in n 
independent Bernoulli trials

Discrete/Continuous? àDiscrete

Parameters: n – number of trials; p – probability of successes

PMF = !(! = !) = !
! !!(1− !)!!!

Properties
Possible values: ! ∈ 0,1,…, n
Mean: E ! = !"
Variance: Var ! = !"(1− !)



Normal Distribution

Random Variable àY = value of normally distributed 
variable

Discrete/Continuous? àContinuous

Parameters :μ = mean, σ2 = variance

!"# = ! ! = !
!!!! !

! !!! !
!!!

Properties
Possible values: ! ∈ (−∞,∞)
Mean: E ! = !
Variance: Var ! = !!



What have we done so far?

Remember, Google is 
your friend! You do not 
have to memorize the 
long PMFs and PDFs!

Focus on remembering 
the properties, and 
most importantly, the 
applications, of what we 
have learn.

▪ Probability
– Stated and applied the rules (axioms) of 

probability
– Covered set notation
– Defined conditional probability, 

decomposition, and Bayes’ Theorem

▪ Random Variables
– Defined random variables
– Characterized PMF/PDF and CDF
– Understood probability distributions



Let’s take a break!

Please be back in 5 minutes J



Introduction to Statistics



Why do we use statistics?

▪ Probability distributions are not real world observations; rather, they are 
mathematical constructs that can help us estimate unknown parameters, θ, 
with our data

▪ Statistics is the science of connecting these distributions with data

▪ We’ll get into this later, but the terminology of statistics can be a little 
tricky. 
– Properties of distributions differ from properties of data
– e.g. distribution/sampling mean vs. sample mean



Properties of Data: Central Tendency

▪ The central tendency of a variable reflects its typical, average, or expected 
value

▪ For a continuous variable with values of ! ranging from [1…n], the sample 
mean is:

!̅ = 1
!!!!!

!
!!

▪ If we were to take more and more numbers into our sample (i.e. increase 
the size of our sample size n), then !̅à μ (the sample mean will converge to 
the true mean). This is called the Law of Large Numbers.

▪ Other measures of central tendency include median, mode



Properties of Data: Variability

• A data’s dispersion, or variability, characterizes how data departs from the 
center and from each other  

• Sample variance

• Biased: Var ! = !! = !
!∑!!!

! (!! − !̅)!

• Unbiased: Var ! = !! = !
!!!∑!!!

! (!! − !̅)!

• Sample standard deviation is on the same scale as the random variable.

• SD = Var(!)
• Others: range, interquartile range (IQR)



Properties of Data: Covariance

We may also want to describe the joint variability of X 
andY.

Covariance: 

!cov !,! = 1
! − 1!

!!!

!
(!! − !!)(!! − !!)

We can think of this as a measure of the extent to which 
extreme values of each variable tend to occur together. If 
they tend in similar directions, the covariance is positive; 
if they tend in opposite directions, it’s negative.



Properties of Data: Correlation

Although covariance can tell us the direction of the relationship, it can be hard to 
compare magnitudes. 

If we standardize the covariance by dividing by the product of the standard 
deviations, we get the correlation, which we often refer to with !.

! = Cov(!,!)
Var ! Var !

The correlation is constrained to be between -1 and 1.



Estimation

Estimand: the parameter of interest whose true value we would like to know 
(e.g. θ, μ)

Estimator: the method of estimating the estimand (for example, if we would 
like to know the value of estimand μ, we can take a sample and use the 
sample mean (e.g. !̅) as an estimator of μ)

Estimate: the numerical estimate of the estimand that results from the use of 
a particular estimator



Estimation

Let us say that you want to know μ, the true mean  height in the population. 
This is your .

You take a random sample of 50 people in the population and measure their 
heights. You then take the mean, !̅,  of the heights of these 50 people in your 
sample. !̅ is your .

Let’s say the sample mean, !̅, is 64 inches (I made this up). This is your 
__________.

SO we made the journey from:



Estimation: Expectation

We can think about our estimands as expectations,E ! , of their probability 
distributions.

For example, the sample mean, !̅, is an estimator of the expected value of a 
distribution:

E ! = !

The sample variation is the expectation of the squared distance from the mean.

Var ! = E[(X − E X )!]

Similarly, the covariance can be defined as:

Cov(!,!) = ![ ! − ! ! ! − ! ! ]



What makes for a “good” estimator?

A good estimator has a sampling distribution that usually gives us something 
as close to the estimand as possible.

The distribution of a statistic across infinitely many data sets is called a 
sampling distribution.

Good estimators are often:

▪ Unbiased: the mean of the estimator’s sampling distribution is the target 
parameter

▪ Efficient: the estimator has a low variance – since we’ll only get to observe 
one data set, we’d like the estimator to return values close to its mean
– “more efficient” = “has smaller standard error”
– Standard error (SE) = !"#$"%&' of an estimator’s sampling distribution



Sample Mean vs. Sampling Distribution

Tool developed by Rice University

http://www.onlinestatbook.com/


Central Limit Theorem

▪ Many estimators involve using the sample mean !̅ = !
!∑!!!

! !!, calculated on 
independent and identically distributed (i.i.d.) data

▪ Through the central limit theorem (CLT), we can learn what happens to the 
sampling distribution of !̅ asymptotically (i.e., as the sample size n grows large)

▪ If x1,…,xn have common mean μ and finite variance σ2, we can conclude that:

!̅~ ! μ, σ
2

! as ! → ∞

▪ Likewise, our standard error (the standard deviation of our sampling distribution) 
is: SE = Var ! /!.

For large n, the sampling distribution of the sample mean looks a lot like a normal 
distribution



Statistical Approaches to Estimation

• The formulas we have discussed are conventional approaches to 
parameter estimation

• However, how do other measures (e.g. median) fit into this mold?
• What happens when we want to make more complex distributional 

assumptions? Multivariate assumptions?

• There are actually many ways to go about estimation, e.g.
• One Least Square (OLS)
• Maximum Likelihood Estimation (MLE)
• Method of Moments
• etc. 



True Distribution ≠ Distributional Assumptions

Most of the time, the true distribution that generates our sample data is 
unknown. When we make distributional assumptions, we are just applying 
mathematical constructs based on what we know about our data.

In order to build confidence around our estimates, we need validity and 
hypothesis testing.



Null Hypothesis Significance Testing 
(NHST) framework

• Evaluates the compatibility of observed data with some “null” 
hypothesis H0, which is the default assumption for the model generating 
the data

• Two possible options:
• Reject the null
• Fail to reject the null (we never “accept” the null)

• Usually the null hypothesis is selected so that rejecting the null identifies 
something of scientific importance

• Distinguishing between statistically and practically significant results is 
part of our job as researchers!



Null Hypothesis Significance Testing 
(NHST) framework

• !!: the null hypothesis

• !!: the alternative hypothesis

• !:The test statistic calculated from the data

• !"## !"#$%"&'$"(): the sampling distribution for T if H0 were true

• !"#"$%&'( !"#$%&: the set of values t for which T = t would lead us to 
reject the null

• !""#$%&'"# !" !"! − !"#"$%&'( !"#$%&: the set of values t for which 
T=t would lead us to fail to reject the null



Null Hypothesis Significance Testing 
(NHST) framework

Type I Error, !: we reject !!
when!! is true
Type II Error, !: we fail to
reject!! when!! is false
Power, 1- !: we reject !!
when!! is false

Blue = null
Red = alternate

RejectDo not reject



Null Hypothesis Significance Testing 
(NHST) framework

Our significance level, or the probability of rejection when the null is true, is 
conventionally set at ! = 0.05. 
Due to the CLT, we can obtain a test statistic that is normally distributed:

!̅ − !(!)
!Var(!)
!

∼ ! 0,1 as ! → ∞

Using the normal pdf, we obtain its corresponding p-value, or the probability 
under the null of observing a test statistic as extreme or more extreme than the 
observed test statistic value. 



Confidence Intervals

We can also construct 95% confidence intervals around our statistic by:

!̅ ± 1.96
!Var !
!

This is essentially the inverse of what we did to calculate our test statistic.
If we repeatedly take large samples from the population and construct a confidence 
interval around the sample proportion, they should contain the true ! 95% of the 
time. 



Don’t worry, we got this!

• Today was A LOT, so first, give yourself a pat on the back

• PHS2000A and 2000B will teach you:
• The relationship between study design and statistics
• Thoughtful selection of estimands that reflect causal parameters
• Modern methods for parameter estimation

• All of these concepts that we discussed will be properly contextualized as 
this course progresses, so even if you don’t understand some of the 
topics we covered today, that is okay

• The goal of this review is to give you an idea of the kinds of concepts that 
we’ll be drawing on throughout the semester
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