
submit panel questions
Please use the link below to submit anonymous questions for the
student panel this afternoon, no later than 1pm EST today if possible!

Submit a question here!
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review
So far this week, we've discussed the idea of random variables and their
properties including:

‣ Expected values 

‣ Variance 

‣ Probability distributions, like the Binomial distribution for a discrete
variable or Normal distribution for one that's continuous.

But why do we actually care about these things? Why do we even need
to worry about crazy expressions like the one below? 

i.e. the PDF of a normal distribution, please don't actually memorize this -- it's on Wikipedia

→ E(X)

→ Var(X)
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a data generating world
Ultimately, we're interested in these concepts because we can think of
these distributions of random variables as an approximation of the
world we live in -- and of the processes we wish to understand. In Public
Health we might think of:

‣ The number of events that occur in a given period of time (such as
the number of hospitalizations per week) as a Poisson process.1

‣ Whether or not someone experiences pre-term birth as a
Binomial/Bernoulli process.2

4 / 66

a data generating world
Ultimately, we're interested in these concepts because we can think of
these distributions of random variables as an approximation of the
world we live in -- and of the processes we wish to understand. In Public
Health we might think of:

‣ The number of events that occur in a given period of time (such as
the number of hospitalizations per week) as a Poisson process.1

‣ Whether or not someone experiences pre-term birth as a
Binomial/Bernoulli process.2

‣ From your favorite �eld of interest, what's another example of a
random variable and what sort of distribution could it be
represented by?
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a data generating world
More often than not, we as public health researchers want to describe
the relationship between two or more random variables. For example:

‣ What is the relationship between income and health?

‣ Are people who smoke more likely to develop lung cancer?

‣ Is increased air pollution associated with excess mortality in
children?

‣ Does exposure to a sugary beverages tax decrease risk of obesity?
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the plan for today
1. Introduce the FÜN Study

2. Relationships between variables

3. Intro to linear regression

4. Wrapping up + conclusions
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the plan for today
We will use R  to explore different ways to assess relationships between
variables. Interactive exercises can be found on the website below, but
feel free to work on your own computer if you'd like.

https://phs-summr2020.netlify.app/

This material is meant to introduce or refresh your memory of certain
concepts, but it is totally ok if you don't understand everything: we will
be returning to much of this over the course of the Fall semester.
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variables. Interactive exercises can be found on the website below, but
feel free to work on your own computer if you'd like.

https://phs-summr2020.netlify.app/

This material is meant to introduce or refresh your memory of certain
concepts, but it is totally ok if you don't understand everything: we will
be returning to much of this over the course of the Fall semester.

Questions: If you have a question, feel free to type it into the Zoom
chatbox and we'll return to it at various points in the presentation. You
can always email me (mlee8@g.harvard.edu) or any of the other TF's if
you think of something later on.
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the FÜN study
To build our intuition of ideas, let's look at a silly made-up dataset from
the Follow-up of Über-cool StudeNts (FUN). As part of the study, 10,000
doctoral students pursuing health-related degrees were asked to
provide information on:

‣ W : Whether the student is currently in their "dissertating" phase

‣ A.con : # hours student slept last night

‣ A.bin : Whether student slept at least 8 hours (yes/no)

‣ Y.con : # times student used a food delivery service (FDS) last week

‣ Y.bin : Whether FDS comprised ≥50% of the week's meals (yes/no)

A note: our outcome Y.con  is continuous, rather than discrete, to take
into account fractions of meals a student ate (e.g. snacks, second
breakfasts)
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the FÜN study
Suppose that we actually know the true relationships between these
variables and how they were generated in the population. Speci�cally:

That is, student sleep hours and FDS use is affected by whether a
student is writing their dissertation, but student sleep itself does not
cause FDS use. We'll come back to this when we talk about
confounding and regression.

* Full details on how this data were simulated can be viewed here. 10 / 66

the plan for today
1. Introduce the FÜN Study

2. Relationships between variables

3. Intro to linear regression

4. Wrapping up + conclusions

11 / 66

relationships between r.v.'s
By now you've probably heard the phrase:

correlation does not imply causation" (or something similar).

But what do we mean by correlation in the �rst place? And why doesn't
it imply causation?

When two variables are correlated, we are trying to get at this idea that
two variables are related. Let's look at how to quantify this relationship.
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the simple 2x2
When we have two variables that are both Bernoulli distributed (i.e.
they take on values of 0 or 1 only), the easiest thing we can do is draw
up a 2x2 contingency table. Going back to our FUN study example, we
can count how many students (recall your set notation!):

1. Got ≥8 hours of sleep and used FDS ≥50% of the week

‣ (A.bin  = 1  Y.bin  = 1)
2. Got ≥8 hours of sleep and did not use FDS 50% of the week

‣ (A.bin  = 1  Y.bin  = 0)
3. Got <8 hours of sleep and did not use FDS 50% of the week

‣ (A.bin  = 0  Y.bin  = 1)
4. Got <8 hours of sleep and used FDS ≥50% of the week

‣ (A.bin  = 0  Y.bin  = 0)

∩

∩

∩

∩
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the simple 2x2
Thankfully, we can do this easily in R , rather than going through every
row of the data and tallying things up

xtabs(~Y.bin + A.bin, data = big.FUN)

##      A.bin
## Y.bin    0    1
##     0 7022 1797
##     1 1151   30

We can use this information to calculate the prevalence ratio,
comparing the prevalence of ≥50% FDS use between those who got 8
hours of sleep to those who did not:

PR =

PR = / = 0.117

P(Y.bin = 1 ∣ A.bin = 1)

P(Y.bin = 1 ∣ A.bin = 0)
30

1827

1151

8173
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the simple 2x2

What does this mean?

This suggests that the proportion of students who used FDS
for ≥50% of their weekly meals among those who got at least
8 hours of sleep was 88.3% lower than the proportion of
students who used FDS for ≥50% of their weekly meals
among those who got less than 8 hours of sleep.

In other words, those who get at least 8 hours of sleep appear to be
much less likely to use food delivery services for more than half of their
weekly meals.

PR = / = 0.117
30

1827

1151

8173
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Other statistics you might be
familiar with that are often used
to assess relationships between
two Bernoulli random variables
are:

‣ Odds ratios

‣ Risk ratios

‣ Hazard ratios

‣ Risk differences

Each has its own interpretation,
you will learn more about each
one in PHS 2000A and EPI
201/202!

the simple 2x2
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But what about continuous variables?

i.e. you still haven't told me what correlation is yet
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covariance
When we have two continuous random variables  and , one statistic
we can use to assess their relationship is their covariance:

This measures the tendency of two random variables to“move
together”. If they tend to move in similar directions, the covariance is
positive. If they tend to move in opposite directions, it’s negative.

In other words, the covariance answers the multi-part question: How
variable is ? How variable is ? Does variation in  increase as
variation in  increases? Is  more variable when  is more variable?

X Y

Cov(X,Y ) = E [X − E(X)] × E [Y − E(Y )]

X Y X
Y X Y
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covariance
Another way to understand what the covariance represents is with a
plot. Returning to our FUN study example, let's examine the
relationship between the hours slept last night (A.con) and the
number of times food delivery services were used that week (Y.con),
both as continuous variables.
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covariance

We'll start by simply looking at a scatter plot with sleep hours on the x-
axis and FDS use on the y-axis. Here, we've taken a small random
sample of 50 students so we can see what's going on more clearly.
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covariance

Now we've added dashed lines representing the mean hours of sleep
and the mean FDS use across these 50 students.
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covariance

If we draw vertical and horizontal lines between each point and these
dashed mean lines, we get a series of rectangles where each rectangle's
height is (Y.con - E(Y.con)) and each rectangle's width is (A.con -
E(A.con)).
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covariance

Multiplying these together, we'll get the area of each rectangle, that is:
(Y.con - E(Y.con)) (A.con - E(A.con)). Some rectangles will have negative
areas (blue) and others will have positive areas (pink).
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covariance

Once we add all these areas up and divide by the number of rectangles
(i.e. obtain the mean of the areas), we get the quantity E[(Y.con -
E(Y.con)) (A.con - E(A.con))], which is (suprise), the expression we saw for
the population covariance!
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covariance

Question: Imagine you have 1 million observations of  and 1 million
observations of , but all values of  are the same and all values of 
are the same. What's the covariance between  and ?

X
Y X Y

X Y
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covariance

Question: Imagine you have 1 million observations of  and 1 million
observations of , but all values of  are the same and all values of 
are the same. What's the covariance between  and ?

i.e. We can't study the relationship between two variables when either
variable doesn't vary (or in practice varies very little). If we want to

design a study to look at this relationship, we need to keep this in mind!

X
Y X Y

X Y
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covariance --> correlation
Why would we use the covariance to quantify relationships?
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‣  is a constant

‣  is symmetric, so 

‣

Cov(X,Y )

Cov(X,Y ) Cov(X,Y ) = Cov(Y ,X)

Cov(X,X) = Var(X)
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covariance --> correlation
Why would we use the covariance to quantify relationships?

‣  is a constant

‣  is symmetric, so 

‣

Why wouldn't we use the covariance to quantify relationship?

‣  is sensitive to the scale of the random variables (e.g.
think transformations of age or time).

‣ Therefore, it doesn't really provide us with useful information on the
strength of relationships -- is the covariance large because the
relationship is strong or because of the scale of your variables?

‣  isn't all that easily interpreted!

Cov(X,Y )

Cov(X,Y ) Cov(X,Y ) = Cov(Y ,X)

Cov(X,X) = Var(X)

Cov(X,Y )

Cov(X,Y )
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correlation
Let's �x this scaling issue of the covariance by dividing it by the
standard deviations of our random variables. This is called the
correlation!

ρX,Y =
Cov(X,Y)

√Var(X)√Var(Y )
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correlation
Let's �x this scaling issue of the covariance by dividing it by the
standard deviations of our random variables. This is called the
correlation!

Unlike the covariance, the correlation  is:

‣ Not sensitive to scale, and is bounded between -1 and 1

‣ Does tell us about the strength of the relationship

‣ More intuitive, the correlation between a r.v. with itself is 

ρX,Y =
Cov(X,Y)

√Var(X)√Var(Y )

ρ

ρX,X = 1
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correlation

Let's use some geometry again to help illustrate what the correlation
measures. Recall our plot of the covariance as a series of rectangles
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correlation

The standard deviation of our A.con  or Y.con  variable is the average
deviation between each point and their group means, i.e.

, and is on the original scale of the variableσ =√∑n

i=1(x−x̄)2

n
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correlation

The correlation is then the average area of each rectangle divided by
the product of the lengths of the two red bars.

Question: Why does this solve the scaling issue?
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Great!! Now we can say that (1)
the hours of sleep a student gets
is inversely correlated with food
delivery service use, and (2) that
this relationship is moderately
strong**

But what if in actuality, students
were more likely to use FDS
when they slept both very little
and a lot? This plot might look
like:

correlation
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correlation
Clearly, these two variables are related. This demonstrates another
limitation of the correlation, which is that  is only useful in cases where
the relationships between random variables is linear.

ρ
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correlation
Clearly, these two variables are related. This demonstrates another
limitation of the correlation, which is that  is only useful in cases where
the relationships between random variables is linear.

Second, correlations are often not meaningful for public health
practice. They don't tell us anything about how much of a change in
one variable is related to a change in another variable.

‣ For example, I could tell you that sleep hours is related to FDS use
with a correlation of -0.498, but I wouldn't be able to tell you the
actual decrease in FDS use for every additional hour of sleep a
student got.

ρ
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correlation, maybe causation?
Another limitation of these methods (2x2 tables, covariance,
correlation), is when we are interested in not only the relationship
between two random variables, but the effect one has on another.
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correlation, maybe causation?
Another limitation of these methods (2x2 tables, covariance,
correlation), is when we are interested in not only the relationship
between two random variables, but the effect one has on another.

Remember our true data-generating process for the FUN study?

In reality, sleep doesn't have any effect on food delivery
service at all, even though our calculations of the prevalence ratio,
covariance, and correlation would lead us to believe otherwise.
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correlation, maybe causation?

Why is this the case? Both sleep and FDS use are affected by a third
variable W , which is an indicator of whether a student is currently
writing their dissertation. Those that are dissertating are more likely to
order delivery and less likely to get a full night's sleep. In other words,
dissertation-writing status is a confounder of the sleep-FDS use
relationship.
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correlation, maybe causation?

If we don't account for this confounding in an analysis, our estimates
will (usually) be spurious! Another way to think of this:

Disseration status (W) is actually driving changes in food
delivery service use. (Y) Sleep hours (A) might be a proxy for
disseration status, so when we look at the relationship
between sleep and FDS without considering dissertation
writing, we see an association. However, we would be wrong
to say that sleep hours itself causes FDS use.
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correlation, maybe causation?
But now what? How do we move forward in the face of confounding?

‣ One option is to re-calculate our estimates of association (e.g. PR,
covariance, correlation) within strata of our confounder. For
example:

  cor(big.FUN$A.con[big.FUN$W==1], big.FUN$Y.con[big.FUN$W==1])

  ## [1] 0.00291325

  cor(big.FUN$A.con[big.FUN$W==0], big.FUN$Y.con[big.FUN$W==0])

  ## [1] 0.01592148

These are not exactly equal due to random noise, but both suggest
little (if any) correlation between A  and Y  on the continuous scale. And
they are both signi�cantly different than our initial estimate of the
correlation, which was -0.498!
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correlation, maybe causation?
However, let's say we have not just one, but 20+ different confounders.
Unless we have millions and millions of observations, there's no way we
could look at the the relationships between variables in all of the
(potentially in�nite) number of strata. This is sometimes called the
curse of dimensionality.
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However, let's say we have not just one, but 20+ different confounders.
Unless we have millions and millions of observations, there's no way we
could look at the the relationships between variables in all of the
(potentially in�nite) number of strata. This is sometimes called the
curse of dimensionality.

We will see how regression provides us with one way to move forward
in the face of high-dimensional data.

But �rst, let's take a breather!
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Questions?

Complete this R exercise on
correlation and covariance here
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the plan for today
1. Introduce the FÜN Study

2. Relationships between variables

3. Intro to linear regression

4. Wrapping up + conclusions
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linear regression
Linear regression is a method that allows us to use data ef�ciently and
�exibly to quantify relationships between random variables. For a
research question of interest, there are a number of steps we can take
to reach a conclusion:
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�exibly to quantify relationships between random variables. For a
research question of interest, there are a number of steps we can take
to reach a conclusion:

1. Specify a causal model (how does the world work?)
2. Connect observed data to causal model (how do my data work?)
3. Translate our research question into a mathematical expression and

statistical estimand (odds ratio? risk difference?)
4. Identify what assumptions we need to make to answer this research

question (do I need to adjust for a, b, or c?)
5. Propose a statistical model and estimate parameters
6. Interpret

This is what your subject-matter knowledge helps with!
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linear regression
Linear regression is a method that allows us to use data ef�ciently and
�exibly to quantify relationships between random variables. For a
research question of interest, there are a number of steps we can take
to reach a conclusion:

1. Specify a causal model (how does the world work?)
2. Connect observed data to causal model (how do my data work?)
3. Translate our research question into a mathematical expression and

statistical estimand (odds ratio? risk difference?)
4. Identify what assumptions we need to make to answer this research

question (do I need to adjust for a, b, or c?)
5. Propose a statistical model and estimate parameters
6. Interpret

This is what linear regression can help us with! We will discuss steps 3.,
5., and 6. (and come back to 4.)
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linear regression
Today, we will discuss linear regression in the context of two continuous
random variables, but over the course of this semester we will also learn
what to do with discrete, time-to-event, and Bernoulli variables.

43 / 66

3. question of interest
Let's look at our FUN study example again, plotting sleep time against
delivery service use. This time, we'll take a random sample of 500
students from the 100,000.

We might be interested in the question: For every additional hour of
sleep a student gets per night, what is the absolute change in food
delivery service use on average? Neither correlation or covariance
directly answers this question
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Let  represent any arbitrary number of hours of sleep per night. Let 
represent any arbitrary number of food delivery service uses per week.
In other words, we want to know how the mean of  changes given a 1
unit increase in . This is our target estimand

X Y

Y
X
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Let  represent any arbitrary number of hours of sleep per night. Let 
represent any arbitrary number of food delivery service uses per week.
In other words, we want to know how the mean of  changes given a 1
unit increase in . This is our target estimand

X Y

Y
X

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x)
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5a. statistical model
In order to relate these two variables, we need to map our change in 
to our change in , making some assumption about their
relationship. This is where we have a choice!

X
E(Y )

(X + 1) − (X)
?
↦ ΔE(Y )
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5a. statistical model
Let's assume for simplicity that the relationship between  and  is
a straight line. Then our statistical model relating mean FDS use and
hours of sleep can be written as:

E(Y ) X

E(Y ∣ X = x) = β0 + β1X
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5a. statistical model
Let's assume for simplicity that the relationship between  and  is
a straight line. Then our statistical model relating mean FDS use and
hours of sleep can be written as:

This isn't really anything new -- it's the same as:

Which you've probably seen already in other classes. The main point
here is that this statistical model encodes an assumption that the
relationship between mean FDS use to hours of sleep is governed by an
intercept and a slope.

E(Y ) X

E(Y ∣ X = x) = β0 + β1X

y = mx + b

y = b + mx

E(FDS ∣ SleepHours) = β0 + β1(SleepHours)
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5a. statistical model
But how is this statistical model related to our question of interest? For
every additional hour of sleep a student gets per night, what is the
absolute change in food delivery service use on average?

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x)
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5a. statistical model
But how is this statistical model related to our question of interest? For
every additional hour of sleep a student gets per night, what is the
absolute change in food delivery service use on average?

Well, we know that for any arbitrary value of , the expected value
of  according to our model is

And for the next value , we can substitute  into this
expression:

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x)

X = x
Y

E(Y ∣ X = x) = β0 + β1x (1)

X = x + 1 (x + 1)

E(Y ∣ X = (x + 1)) = β0 + β1(x + 1) (2)
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5a. statistical model
If we subtract equation (1) from equation (2), we get:

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x) = β0 + β1(x + 1)

  − (β0 + β1x)

= β1
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Which shows us that what we're interested in: the change in mean food
delivery service use for a 1 hour increase in hours of sleep, is simply
given by , or the slope, from this statistical model!
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5a. statistical model
If we subtract equation (1) from equation (2), we get:

Which shows us that what we're interested in: the change in mean food
delivery service use for a 1 hour increase in hours of sleep, is simply
given by , or the slope, from this statistical model!

Given our data, the next question is how exactly to estimate . In other
words, what's the most likely value of the slope relating mean FDS to
sleep hours, considering what we actually observe?

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x) = β0 + β1(x + 1)

  − (β0 + β1x)

= β1

β1

β1
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5b. estimation
The most common way to estimate parameters from a linear model
like the one we've speci�ed in our statistical model is an algorithm
called ordinary least squares (OLS).

Aside: naming conventions in statistics can be weird. Least
squares: based on the mechanism of the algorithm. Ordinary:
less complicated than methods developed later
chronologically.
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5b. estimation
Let's look at the steps in the OLS algorithm:

1. Pick a line, any line, by de�ning candidate values of  and β0 β1
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5b. estimation
Let's look at the steps in the OLS algorithm:

2. Calculate the difference between the observed points and the value
of E(Y) predicted by our candidate model, and square it.
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5b. estimation
Let's look at the steps in the OLS algorithm:

3. Find the combination of intercept and slope that minimizes the
average of the squared distances
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5b. estimation
When we only have two variables, it turns out the OLS solution to our
question: what is the most likely slope given the data I observe is given
by:

If we divide both the numerator by , we have:

Which is cool because:

: the sample covariance between  and 

: the sample variance of .

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)

∑n

i=1(xi − x̄)2

n − 1

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)1
n−1

∑n
i=1(xi − x̄)21

n−1

∑n

i=1(xi − x̄)(yi − ȳ)1
n−1

X Y

∑n

i=1(xi − x̄)21
n−1 X
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5b. estimation
Let's do this with the FUN dataset in R  to illustrate:

ols.fit <- lm(Y.con ~ A.con, data = big.FUN)
summary(ols.fit)

Call:
lm(formula = Y.con ~ A.con, data = big.FUN)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.0173 -2.3592 -0.3798  2.2430 11.2263 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 11.53031    0.11610   99.31   <2e-16 ***
A.con       -0.98526    0.01761  -55.95   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.145 on 9998 degrees of freedom
Multiple R-squared:  0.2385,    Adjusted R-squared:  0.2384 
F-statistic:  3131 on 1 and 9998 DF,  p-value: < 2.2e-16
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lm(formula = Y.con ~ A.con, data = big.FUN)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.0173 -2.3592 -0.3798  2.2430 11.2263 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 11.53031    0.11610   99.31   <2e-16 ***
A.con       -0.98526    0.01761  -55.95   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.145 on 9998 degrees of freedom
Multiple R-squared:  0.2385,    Adjusted R-squared:  0.2384 
F-statistic:  3131 on 1 and 9998 DF,  p-value: < 2.2e-16

The estimated line according to OLS is therefore given by:

E(Y ∣ X = x) = 11.53 − 0.99(X)
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5b. estimation
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6. interpretation
How do we interpret this? Remember that our research question, for
every additional hour of sleep a student gets per night, what is the
absolute change in food delivery service use on average?, is
represented by the expression ,
which we determined was equal to  according to our statistical
model.

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x)
β1
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6. interpretation
How do we interpret this? Remember that our research question, for
every additional hour of sleep a student gets per night, what is the
absolute change in food delivery service use on average?, is
represented by the expression ,
which we determined was equal to  according to our statistical
model.

We used OLS to estimate the intercept and slope parameters, and
found that 

Working backwards using this logic, then, we can conclude that for
every additional hour of sleep a student gets per night, food delivery
service decreases by 0.99 times per week on average.

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x)
β1

β̂1 = −0.99

57 / 66

beta estimation, maybe causation?

But wait! Remember our true data-generating process for the FUN

study. In reality, sleep hours does not affect delivery service use.

We have the same issue of confounding, just as we did when
calculating the prevalence ratio, covariance, and correlation! Linear
regression doesn't magically solve these issues
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beta estimation, maybe causation?
However, it does help us move forward more ef�ciently. While we could
just as easily re-run our regression models within strata of our covariate
(dissertation writing status) another solution is to simply include this
confounder as a covariate in our statistical model.

59 / 66

beta estimation, maybe causation?
However, it does help us move forward more ef�ciently. While we could
just as easily re-run our regression models within strata of our covariate
(dissertation writing status) another solution is to simply include this
confounder as a covariate in our statistical model.

Instead of our previous model:

E(Y ∣ X = x) = β0 + β1x

59 / 66

beta estimation, maybe causation?
However, it does help us move forward more ef�ciently. While we could
just as easily re-run our regression models within strata of our covariate
(dissertation writing status) another solution is to simply include this
confounder as a covariate in our statistical model.

Instead of our previous model:

We can include dissertation writing status (let's call it ) into the mix:

E(Y ∣ X = x) = β0 + β1x

W

E(Y ∣ X = x,W = w) = β0 + β1x + β2w

59 / 66

beta estimation, maybe causation?
However, it does help us move forward more ef�ciently. While we could
just as easily re-run our regression models within strata of our covariate
(dissertation writing status) another solution is to simply include this
confounder as a covariate in our statistical model.

Instead of our previous model:

We can include dissertation writing status (let's call it ) into the mix:

What new assumption does this encode?

E(Y ∣ X = x) = β0 + β1x

W

E(Y ∣ X = x,W = w) = β0 + β1x + β2w

59 / 66

beta estimation, maybe causation?
However, it does help us move forward more ef�ciently. While we could
just as easily re-run our regression models within strata of our covariate
(dissertation writing status) another solution is to simply include this
confounder as a covariate in our statistical model.

Instead of our previous model:

We can include dissertation writing status (let's call it ) into the mix:

What new assumption does this encode?

Mean FDS use per week is a function of sleep hours and/or dissertation
writing, or neither

E(Y ∣ X = x) = β0 + β1x

W

E(Y ∣ X = x,W = w) = β0 + β1x + β2w
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beta estimation, maybe causation?
Linear regression, compared to correlation and covariance, is:

‣ Flexible:

‣ I can add 1, 10, or 50 covariates (assuming I have the data)

‣ I can easily change my assumptions about the functional form
of relationships between variables (e.g. line? curve? other?)

‣ Ef�cient: When the data are sparse, I can borrow information from
neighboring observations (this is particularly helpful when we have
multiple continuous explanatory variables)
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beta estimation, maybe causation?
We can �t an updated model, with dissertation status, in R :

ols.fit2 <- lm(Y.con ~ A.con + W, data = big.FUN)
summary(ols.fit2)

Call:
lm(formula = Y.con ~ A.con + W, data = big.FUN)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.3039 -1.0379 -0.0136  1.0038  6.5108 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  2.90385    0.07199   40.34   <2e-16 *** 
A.con        0.01151    0.00992    1.16    0.246 
W            7.01219    0.03774  185.81   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.49 on 9997 degrees of freedom
Multiple R-squared:  0.829,    Adjusted R-squared:  0.829 
F-statistic: 2.423e+04 on 2 and 9997 DF,  p-value: < 2.2e-16

This gives us the right answer: There is no relationship between sleep
hours and food delivery service use independent of dissertation writing
status
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Questions?

Complete this R exercise on regression
basics here
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the plan for today
1. Introduce the FÜN Study

2. Relationships between variables

3. Intro to linear regression

4. Wrapping up + conclusions
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4. identify assumptions needed
Linear regression allows to relate one random variable to another. If
we're interested in causal relationships, i.e.:
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4. identify assumptions needed
Linear regression allows to relate one random variable to another. If
we're interested in causal relationships, i.e.:

For every additional hour of sleep a student gets per night,
what is the absolute change in food delivery service use on
average?

vs.

If students sleep an additional hour per night, what is the
absolute change in food delivery service use compared to if
students did not sleep an additional hour per night?

Then we need to think carefully about what covariates we need to
adjust for (i.e. include in our regression model) in order to isolate the
effect of sleeping on food delivery service use.
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4. identify assumptions needed

This is to say that linear regression, like correlation or covariance or
other methods, is just a tool we can use to answer questions. But these
tools can be mis-used and without the proper subject matter
knowledge, can lead us astray.

i.e. regression is dumb, you are not!
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you made it!

You are here for a reason!

You can learn!

You are capable!

We believe in you!
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submit panel questions
Please use the link below to submit anonymous questions for the
student panel this afternoon, no later than 1pm EST today if possible!

Submit a question here!
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review
So far this week, we've discussed the idea of random variables and their
properties including:

‣ Expected values 

‣ Variance 

‣ Probability distributions, like the Binomial distribution for a discrete
variable or Normal distribution for one that's continuous.

But why do we actually care about these things? Why do we even need
to worry about crazy expressions like the one below? 

i.e. the PDF of a normal distribution, please don't actually memorize this -- it's on Wikipedia

→ E(X)

→ Var(X)

f(x) = exp{− ( )
2

}
1

σ√2π

1

2
x − μ

σ

3 / 66



a data generating world
Ultimately, we're interested in these concepts because we can think of
these distributions of random variables as an approximation of the
world we live in -- and of the processes we wish to understand. In Public
Health we might think of:

‣ The number of events that occur in a given period of time (such as
the number of hospitalizations per week) as a Poisson process.1

‣ Whether or not someone experiences pre-term birth as a
Binomial/Bernoulli process.2
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Ultimately, we're interested in these concepts because we can think of
these distributions of random variables as an approximation of the
world we live in -- and of the processes we wish to understand. In Public
Health we might think of:

‣ The number of events that occur in a given period of time (such as
the number of hospitalizations per week) as a Poisson process.1

‣ Whether or not someone experiences pre-term birth as a
Binomial/Bernoulli process.2

‣ From your favorite �eld of interest, what's another example of a
random variable and what sort of distribution could it be
represented by?
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a data generating world
More often than not, we as public health researchers want to describe
the relationship between two or more random variables. For example:

‣ What is the relationship between income and health?

‣ Are people who smoke more likely to develop lung cancer?

‣ Is increased air pollution associated with excess mortality in
children?

‣ Does exposure to a sugary beverages tax decrease risk of obesity?
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the plan for today
1. Introduce the FÜN Study

2. Relationships between variables

3. Intro to linear regression

4. Wrapping up + conclusions
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the plan for today
We will use R  to explore different ways to assess relationships between
variables. Interactive exercises can be found on the website below, but
feel free to work on your own computer if you'd like.

https://phs-summr2020.netlify.app/

This material is meant to introduce or refresh your memory of certain
concepts, but it is totally ok if you don't understand everything: we will
be returning to much of this over the course of the Fall semester.

7 / 66

https://phs-summr2020.netlify.app/


the plan for today
We will use R  to explore different ways to assess relationships between
variables. Interactive exercises can be found on the website below, but
feel free to work on your own computer if you'd like.

https://phs-summr2020.netlify.app/

This material is meant to introduce or refresh your memory of certain
concepts, but it is totally ok if you don't understand everything: we will
be returning to much of this over the course of the Fall semester.

Questions: If you have a question, feel free to type it into the Zoom
chatbox and we'll return to it at various points in the presentation. You
can always email me (mlee8@g.harvard.edu) or any of the other TF's if
you think of something later on.
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the FÜN study
To build our intuition of ideas, let's look at a silly made-up dataset from
the Follow-up of Über-cool StudeNts (FUN). As part of the study, 10,000
doctoral students pursuing health-related degrees were asked to
provide information on:

‣ W : Whether the student is currently in their "dissertating" phase

‣ A.con : # hours student slept last night

‣ A.bin : Whether student slept at least 8 hours (yes/no)

‣ Y.con : # times student used a food delivery service (FDS) last week

‣ Y.bin : Whether FDS comprised ≥50% of the week's meals (yes/no)

A note: our outcome Y.con  is continuous, rather than discrete, to take
into account fractions of meals a student ate (e.g. snacks, second
breakfasts)
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the FÜN study
Suppose that we actually know the true relationships between these
variables and how they were generated in the population. Speci�cally:

That is, student sleep hours and FDS use is affected by whether a
student is writing their dissertation, but student sleep itself does not
cause FDS use. We'll come back to this when we talk about
confounding and regression.

* Full details on how this data were simulated can be viewed here. 10 / 66

https://github.com/leem26/theFUNStudy
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relationships between r.v.'s
By now you've probably heard the phrase:

correlation does not imply causation" (or something similar).

But what do we mean by correlation in the �rst place? And why doesn't
it imply causation?

When two variables are correlated, we are trying to get at this idea that
two variables are related. Let's look at how to quantify this relationship.

H
anging suicides
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US spending on science, space, and technology
 correlates with 

Suicides by hanging, strangulation and suffocation

Hanging suicides US spending on science
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1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

6000 suicides

8000 suicides

4000 suicides

10000 suicides

$15 billion

$20 billion

$25 billion

$30 billion

tylervigen.com
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the simple 2x2
When we have two variables that are both Bernoulli distributed (i.e.
they take on values of 0 or 1 only), the easiest thing we can do is draw
up a 2x2 contingency table. Going back to our FUN study example, we
can count how many students (recall your set notation!):

1. Got ≥8 hours of sleep and used FDS ≥50% of the week

‣ (A.bin  = 1  Y.bin  = 1)
2. Got ≥8 hours of sleep and did not use FDS 50% of the week

‣ (A.bin  = 1  Y.bin  = 0)
3. Got <8 hours of sleep and did not use FDS 50% of the week

‣ (A.bin  = 0  Y.bin  = 1)
4. Got <8 hours of sleep and used FDS ≥50% of the week

‣ (A.bin  = 0  Y.bin  = 0)

∩

∩

∩

∩
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the simple 2x2
Thankfully, we can do this easily in R , rather than going through every
row of the data and tallying things up

xtabs(~Y.bin + A.bin, data = big.FUN)

##      A.bin
## Y.bin    0    1
##     0 7022 1797
##     1 1151   30

We can use this information to calculate the prevalence ratio,
comparing the prevalence of ≥50% FDS use between those who got 8
hours of sleep to those who did not:

PR =

PR = / = 0.117

P(Y.bin = 1 ∣ A.bin = 1)

P(Y.bin = 1 ∣ A.bin = 0)

30

1827

1151

8173
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the simple 2x2

What does this mean?

This suggests that the proportion of students who used FDS
for ≥50% of their weekly meals among those who got at least
8 hours of sleep was 88.3% lower than the proportion of
students who used FDS for ≥50% of their weekly meals
among those who got less than 8 hours of sleep.

In other words, those who get at least 8 hours of sleep appear to be
much less likely to use food delivery services for more than half of their
weekly meals.

PR = / = 0.117
30

1827

1151

8173

15 / 66



Other statistics you might be
familiar with that are often used
to assess relationships between
two Bernoulli random variables
are:

‣ Odds ratios

‣ Risk ratios

‣ Hazard ratios

‣ Risk differences

Each has its own interpretation,
you will learn more about each
one in PHS 2000A and EPI
201/202!

the simple 2x2
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But what about continuous variables?

i.e. you still haven't told me what correlation is yet
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covariance
When we have two continuous random variables  and , one statistic
we can use to assess their relationship is their covariance:

This measures the tendency of two random variables to“move
together”. If they tend to move in similar directions, the covariance is
positive. If they tend to move in opposite directions, it’s negative.

In other words, the covariance answers the multi-part question: How
variable is ? How variable is ? Does variation in  increase as
variation in  increases? Is  more variable when  is more variable?

X Y

Cov(X,Y ) = E [X − E(X)] × E [Y − E(Y )]

X Y X

Y X Y
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covariance
Another way to understand what the covariance represents is with a
plot. Returning to our FUN study example, let's examine the
relationship between the hours slept last night (A.con) and the
number of times food delivery services were used that week (Y.con),
both as continuous variables.
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covariance

We'll start by simply looking at a scatter plot with sleep hours on the x-
axis and FDS use on the y-axis. Here, we've taken a small random
sample of 50 students so we can see what's going on more clearly.
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covariance

Now we've added dashed lines representing the mean hours of sleep
and the mean FDS use across these 50 students.
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covariance

If we draw vertical and horizontal lines between each point and these
dashed mean lines, we get a series of rectangles where each rectangle's
height is (Y.con - E(Y.con)) and each rectangle's width is (A.con -
E(A.con)).
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covariance

Multiplying these together, we'll get the area of each rectangle, that is:
(Y.con - E(Y.con)) (A.con - E(A.con)). Some rectangles will have negative
areas (blue) and others will have positive areas (pink).
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covariance

Once we add all these areas up and divide by the number of rectangles
(i.e. obtain the mean of the areas), we get the quantity E[(Y.con -
E(Y.con)) (A.con - E(A.con))], which is (suprise), the expression we saw for
the population covariance!
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covariance

Question: Imagine you have 1 million observations of  and 1 million
observations of , but all values of  are the same and all values of 
are the same. What's the covariance between  and ?

X

Y X Y

X Y
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covariance

Question: Imagine you have 1 million observations of  and 1 million
observations of , but all values of  are the same and all values of 
are the same. What's the covariance between  and ?

i.e. We can't study the relationship between two variables when either
variable doesn't vary (or in practice varies very little). If we want to

design a study to look at this relationship, we need to keep this in mind!

X

Y X Y

X Y
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covariance --> correlation
Why would we use the covariance to quantify relationships?
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covariance --> correlation
Why would we use the covariance to quantify relationships?

‣  is a constant

‣  is symmetric, so 

‣

Why wouldn't we use the covariance to quantify relationship?

‣  is sensitive to the scale of the random variables (e.g.
think transformations of age or time).

‣ Therefore, it doesn't really provide us with useful information on the
strength of relationships -- is the covariance large because the
relationship is strong or because of the scale of your variables?

‣  isn't all that easily interpreted!

Cov(X,Y )

Cov(X,Y ) Cov(X,Y ) = Cov(Y ,X)

Cov(X,X) = Var(X)

Cov(X,Y )

Cov(X,Y )
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correlation
Let's �x this scaling issue of the covariance by dividing it by the
standard deviations of our random variables. This is called the
correlation!

ρX,Y =
Cov(X,Y)

√Var(X)√Var(Y )
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correlation
Let's �x this scaling issue of the covariance by dividing it by the
standard deviations of our random variables. This is called the
correlation!

Unlike the covariance, the correlation  is:

‣ Not sensitive to scale, and is bounded between -1 and 1

‣ Does tell us about the strength of the relationship

‣ More intuitive, the correlation between a r.v. with itself is 

ρX,Y =
Cov(X,Y)

√Var(X)√Var(Y )

ρ

ρX,X = 1
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correlation

Let's use some geometry again to help illustrate what the correlation
measures. Recall our plot of the covariance as a series of rectangles
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correlation

The standard deviation of our A.con  or Y.con  variable is the average
deviation between each point and their group means, i.e.

, and is on the original scale of the variableσ = √∑
n

i=1(x−x̄)2

n
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correlation

The correlation is then the average area of each rectangle divided by
the product of the lengths of the two red bars.

Question: Why does this solve the scaling issue?
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Great!! Now we can say that (1)
the hours of sleep a student gets
is inversely correlated with food
delivery service use, and (2) that
this relationship is moderately
strong**

But what if in actuality, students
were more likely to use FDS
when they slept both very little
and a lot? This plot might look
like:

correlation
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correlation
Clearly, these two variables are related. This demonstrates another
limitation of the correlation, which is that  is only useful in cases where
the relationships between random variables is linear.

ρ
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correlation
Clearly, these two variables are related. This demonstrates another
limitation of the correlation, which is that  is only useful in cases where
the relationships between random variables is linear.

Second, correlations are often not meaningful for public health
practice. They don't tell us anything about how much of a change in
one variable is related to a change in another variable.

‣ For example, I could tell you that sleep hours is related to FDS use
with a correlation of -0.498, but I wouldn't be able to tell you the
actual decrease in FDS use for every additional hour of sleep a
student got.

ρ
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correlation, maybe causation?
Another limitation of these methods (2x2 tables, covariance,
correlation), is when we are interested in not only the relationship
between two random variables, but the effect one has on another.
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correlation, maybe causation?
Another limitation of these methods (2x2 tables, covariance,
correlation), is when we are interested in not only the relationship
between two random variables, but the effect one has on another.

Remember our true data-generating process for the FUN study?

In reality, sleep doesn't have any effect on food delivery
service at all, even though our calculations of the prevalence ratio,
covariance, and correlation would lead us to believe otherwise.
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correlation, maybe causation?

Why is this the case? Both sleep and FDS use are affected by a third
variable W , which is an indicator of whether a student is currently
writing their dissertation. Those that are dissertating are more likely to
order delivery and less likely to get a full night's sleep. In other words,
dissertation-writing status is a confounder of the sleep-FDS use
relationship.
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correlation, maybe causation?

If we don't account for this confounding in an analysis, our estimates
will (usually) be spurious! Another way to think of this:

Disseration status (W) is actually driving changes in food
delivery service use. (Y) Sleep hours (A) might be a proxy for
disseration status, so when we look at the relationship
between sleep and FDS without considering dissertation
writing, we see an association. However, we would be wrong
to say that sleep hours itself causes FDS use.
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correlation, maybe causation?
But now what? How do we move forward in the face of confounding?

‣ One option is to re-calculate our estimates of association (e.g. PR,
covariance, correlation) within strata of our confounder. For
example:

  cor(big.FUN$A.con[big.FUN$W==1], big.FUN$Y.con[big.FUN$W==1])

  ## [1] 0.00291325

  cor(big.FUN$A.con[big.FUN$W==0], big.FUN$Y.con[big.FUN$W==0])

  ## [1] 0.01592148

These are not exactly equal due to random noise, but both suggest
little (if any) correlation between A  and Y  on the continuous scale. And
they are both signi�cantly different than our initial estimate of the
correlation, which was -0.498!
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correlation, maybe causation?
However, let's say we have not just one, but 20+ different confounders.
Unless we have millions and millions of observations, there's no way we
could look at the the relationships between variables in all of the
(potentially in�nite) number of strata. This is sometimes called the
curse of dimensionality.
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correlation, maybe causation?
However, let's say we have not just one, but 20+ different confounders.
Unless we have millions and millions of observations, there's no way we
could look at the the relationships between variables in all of the
(potentially in�nite) number of strata. This is sometimes called the
curse of dimensionality.

We will see how regression provides us with one way to move forward
in the face of high-dimensional data.

But �rst, let's take a breather!
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Questions?

Complete this R exercise on
correlation and covariance here
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the plan for today
1. Introduce the FÜN Study

2. Relationships between variables

3. Intro to linear regression

4. Wrapping up + conclusions
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linear regression
Linear regression is a method that allows us to use data ef�ciently and
�exibly to quantify relationships between random variables. For a
research question of interest, there are a number of steps we can take
to reach a conclusion:
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linear regression
Linear regression is a method that allows us to use data ef�ciently and
�exibly to quantify relationships between random variables. For a
research question of interest, there are a number of steps we can take
to reach a conclusion:

1. Specify a causal model (how does the world work?)
2. Connect observed data to causal model (how do my data work?)
3. Translate our research question into a mathematical expression and

statistical estimand (odds ratio? risk difference?)
4. Identify what assumptions we need to make to answer this research

question (do I need to adjust for a, b, or c?)
5. Propose a statistical model and estimate parameters
6. Interpret

This is what your subject-matter knowledge helps with!
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linear regression
Linear regression is a method that allows us to use data ef�ciently and
�exibly to quantify relationships between random variables. For a
research question of interest, there are a number of steps we can take
to reach a conclusion:

1. Specify a causal model (how does the world work?)
2. Connect observed data to causal model (how do my data work?)
3. Translate our research question into a mathematical expression and

statistical estimand (odds ratio? risk difference?)
4. Identify what assumptions we need to make to answer this research

question (do I need to adjust for a, b, or c?)
5. Propose a statistical model and estimate parameters
6. Interpret

This is what linear regression can help us with! We will discuss steps 3.,
5., and 6. (and come back to 4.)
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linear regression
Today, we will discuss linear regression in the context of two continuous
random variables, but over the course of this semester we will also learn
what to do with discrete, time-to-event, and Bernoulli variables.
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3. question of interest
Let's look at our FUN study example again, plotting sleep time against
delivery service use. This time, we'll take a random sample of 500
students from the 100,000.

We might be interested in the question: For every additional hour of
sleep a student gets per night, what is the absolute change in food
delivery service use on average? Neither correlation or covariance
directly answers this question
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Let  represent any arbitrary number of hours of sleep per night. Let 
represent any arbitrary number of food delivery service uses per week.
In other words, we want to know how the mean of  changes given a 1
unit increase in . This is our target estimand
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Let  represent any arbitrary number of hours of sleep per night. Let 
represent any arbitrary number of food delivery service uses per week.
In other words, we want to know how the mean of  changes given a 1
unit increase in . This is our target estimand

X Y

Y

X

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x)

45 / 66



5a. statistical model
In order to relate these two variables, we need to map our change in 
to our change in , making some assumption about their
relationship. This is where we have a choice!

X

E(Y )

(X + 1) − (X)
?
↦ ΔE(Y )
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5a. statistical model
Let's assume for simplicity that the relationship between  and  is
a straight line. Then our statistical model relating mean FDS use and
hours of sleep can be written as:

E(Y ) X

E(Y ∣ X = x) = β0 + β1X
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5a. statistical model
Let's assume for simplicity that the relationship between  and  is
a straight line. Then our statistical model relating mean FDS use and
hours of sleep can be written as:

This isn't really anything new -- it's the same as:

Which you've probably seen already in other classes. The main point
here is that this statistical model encodes an assumption that the
relationship between mean FDS use to hours of sleep is governed by an
intercept and a slope.

E(Y ) X

E(Y ∣ X = x) = β0 + β1X

y = mx + b

y = b + mx

E(FDS ∣ SleepHours) = β0 + β1(SleepHours)
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5a. statistical model
But how is this statistical model related to our question of interest? For
every additional hour of sleep a student gets per night, what is the
absolute change in food delivery service use on average?

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x)

48 / 66



5a. statistical model
But how is this statistical model related to our question of interest? For
every additional hour of sleep a student gets per night, what is the
absolute change in food delivery service use on average?

Well, we know that for any arbitrary value of , the expected value
of  according to our model is

And for the next value , we can substitute  into this
expression:

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x)

X = x
Y

E(Y ∣ X = x) = β0 + β1x (1)

X = x + 1 (x + 1)

E(Y ∣ X = (x + 1)) = β0 + β1(x + 1) (2)
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5a. statistical model
If we subtract equation (1) from equation (2), we get:

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x) = β0 + β1(x + 1)

  − (β0 + β1x)

= β1
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Which shows us that what we're interested in: the change in mean food
delivery service use for a 1 hour increase in hours of sleep, is simply
given by , or the slope, from this statistical model!
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5a. statistical model
If we subtract equation (1) from equation (2), we get:

Which shows us that what we're interested in: the change in mean food
delivery service use for a 1 hour increase in hours of sleep, is simply
given by , or the slope, from this statistical model!

Given our data, the next question is how exactly to estimate . In other
words, what's the most likely value of the slope relating mean FDS to
sleep hours, considering what we actually observe?

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x) = β0 + β1(x + 1)

  − (β0 + β1x)

= β1

β1

β1
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5b. estimation
The most common way to estimate parameters from a linear model
like the one we've speci�ed in our statistical model is an algorithm
called ordinary least squares (OLS).

Aside: naming conventions in statistics can be weird. Least
squares: based on the mechanism of the algorithm. Ordinary:
less complicated than methods developed later
chronologically.
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5b. estimation
Let's look at the steps in the OLS algorithm:

1. Pick a line, any line, by de�ning candidate values of  and β0 β1
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5b. estimation
Let's look at the steps in the OLS algorithm:

2. Calculate the difference between the observed points and the value
of E(Y) predicted by our candidate model, and square it.
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5b. estimation
Let's look at the steps in the OLS algorithm:

3. Find the combination of intercept and slope that minimizes the
average of the squared distances

53 / 66



5b. estimation
When we only have two variables, it turns out the OLS solution to our
question: what is the most likely slope given the data I observe is given
by:

If we divide both the numerator by , we have:

Which is cool because:

: the sample covariance between  and 

: the sample variance of .

β̂1 =
∑

n

i=1(xi − x̄)(yi − ȳ)

∑
n

i=1(xi − x̄)2

n − 1

β̂1 =
∑

n

i=1(xi − x̄)(yi − ȳ)1
n−1

∑n

i=1(xi − x̄)21
n−1

∑
n

i=1(xi − x̄)(yi − ȳ)1
n−1

X Y

∑
n

i=1(xi − x̄)21
n−1 X
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5b. estimation
Let's do this with the FUN dataset in R  to illustrate:

ols.fit <- lm(Y.con ~ A.con, data = big.FUN)
summary(ols.fit)

Call:
lm(formula = Y.con ~ A.con, data = big.FUN)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.0173 -2.3592 -0.3798  2.2430 11.2263 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 11.53031    0.11610   99.31   <2e-16 ***
A.con       -0.98526    0.01761  -55.95   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.145 on 9998 degrees of freedom
Multiple R-squared:  0.2385,    Adjusted R-squared:  0.2384 
F-statistic:  3131 on 1 and 9998 DF,  p-value: < 2.2e-16
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Let's do this with the FUN dataset in R  to illustrate:

ols.fit <- lm(Y.con ~ A.con, data = big.FUN)
summary(ols.fit)

Call:
lm(formula = Y.con ~ A.con, data = big.FUN)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.0173 -2.3592 -0.3798  2.2430 11.2263 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 11.53031    0.11610   99.31   <2e-16 ***
A.con       -0.98526    0.01761  -55.95   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.145 on 9998 degrees of freedom
Multiple R-squared:  0.2385,    Adjusted R-squared:  0.2384 
F-statistic:  3131 on 1 and 9998 DF,  p-value: < 2.2e-16

The estimated line according to OLS is therefore given by:

E(Y ∣ X = x) = 11.53 − 0.99(X)
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5b. estimation
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6. interpretation
How do we interpret this? Remember that our research question, for
every additional hour of sleep a student gets per night, what is the
absolute change in food delivery service use on average?, is
represented by the expression ,
which we determined was equal to  according to our statistical
model.

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x)
β1
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6. interpretation
How do we interpret this? Remember that our research question, for
every additional hour of sleep a student gets per night, what is the
absolute change in food delivery service use on average?, is
represented by the expression ,
which we determined was equal to  according to our statistical
model.

We used OLS to estimate the intercept and slope parameters, and
found that 

Working backwards using this logic, then, we can conclude that for
every additional hour of sleep a student gets per night, food delivery
service decreases by 0.99 times per week on average.

E(Y ∣ X = (x + 1)) − E(Y ∣ X = x)
β1

β̂1 = −0.99

57 / 66



beta estimation, maybe causation?

But wait! Remember our true data-generating process for the FUN

study. In reality, sleep hours does not affect delivery service use.

We have the same issue of confounding, just as we did when
calculating the prevalence ratio, covariance, and correlation! Linear
regression doesn't magically solve these issues
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beta estimation, maybe causation?
However, it does help us move forward more ef�ciently. While we could
just as easily re-run our regression models within strata of our covariate
(dissertation writing status) another solution is to simply include this
confounder as a covariate in our statistical model.
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beta estimation, maybe causation?
However, it does help us move forward more ef�ciently. While we could
just as easily re-run our regression models within strata of our covariate
(dissertation writing status) another solution is to simply include this
confounder as a covariate in our statistical model.

Instead of our previous model:

We can include dissertation writing status (let's call it ) into the mix:

What new assumption does this encode?

Mean FDS use per week is a function of sleep hours and/or dissertation
writing, or neither

E(Y ∣ X = x) = β0 + β1x

W

E(Y ∣ X = x, W = w) = β0 + β1x + β2w
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beta estimation, maybe causation?
Linear regression, compared to correlation and covariance, is:

‣ Flexible:

‣ I can add 1, 10, or 50 covariates (assuming I have the data)

‣ I can easily change my assumptions about the functional form
of relationships between variables (e.g. line? curve? other?)

‣ Ef�cient: When the data are sparse, I can borrow information from
neighboring observations (this is particularly helpful when we have
multiple continuous explanatory variables)
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beta estimation, maybe causation?
We can �t an updated model, with dissertation status, in R :

ols.fit2 <- lm(Y.con ~ A.con + W, data = big.FUN)
summary(ols.fit2)

Call:
lm(formula = Y.con ~ A.con + W, data = big.FUN)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.3039 -1.0379 -0.0136  1.0038  6.5108 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  2.90385    0.07199   40.34   <2e-16 *** 
A.con        0.01151    0.00992    1.16    0.246 
W            7.01219    0.03774  185.81   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.49 on 9997 degrees of freedom
Multiple R-squared:  0.829,    Adjusted R-squared:  0.829 
F-statistic: 2.423e+04 on 2 and 9997 DF,  p-value: < 2.2e-16

This gives us the right answer: There is no relationship between sleep
hours and food delivery service use independent of dissertation writing
status
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Questions?

Complete this R exercise on regression
basics here
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the plan for today
1. Introduce the FÜN Study

2. Relationships between variables

3. Intro to linear regression

4. Wrapping up + conclusions
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4. identify assumptions needed
Linear regression allows to relate one random variable to another. If
we're interested in causal relationships, i.e.:
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4. identify assumptions needed
Linear regression allows to relate one random variable to another. If
we're interested in causal relationships, i.e.:

For every additional hour of sleep a student gets per night,
what is the absolute change in food delivery service use on
average?

vs.

If students sleep an additional hour per night, what is the
absolute change in food delivery service use compared to if
students did not sleep an additional hour per night?

Then we need to think carefully about what covariates we need to
adjust for (i.e. include in our regression model) in order to isolate the
effect of sleeping on food delivery service use.
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4. identify assumptions needed

This is to say that linear regression, like correlation or covariance or
other methods, is just a tool we can use to answer questions. But these
tools can be mis-used and without the proper subject matter
knowledge, can lead us astray.

i.e. regression is dumb, you are not!

65 / 66



you made it!

You are here for a reason!

You can learn!

You are capable!

We believe in you!

66 / 66


